**CODEN: WJAPAC Impact Factor: 3.87** ISSN: 3049-3013



# **World Journal of Advance Pharmaceutical Sciences**



Volume 2, Issue 4. Page: 1-6

Research Article

www.wjaps.com

# POSSIBLE RISK FACTORS AFFECTING POST-TONSILLECTOMY BLEEDING

Dr. Ersin Akçam, MD\*1 and Abdullah Belada MD2

<sup>1</sup>Department of Otorhinolaryngology, Afyonkarahisar State Hospital, Afyonkarahisar, Türkiye.

How to cite this Article Dr. Ersin Akçam, MD\* and Abdullah Belada MD (2025). POSSIBLE RISK FACTORS AFFECTING POST-TONSİLLECTOMY BLEEDING, 2(4), 1-6.



Copyright © 2025 Dr. Ersin Akçam, MD | World Journal of Advance Pharmaceutical Sciences
This is an open-access article distributed under creative Commons Attribution-Non Commercial 4.0 International license (CC BY-NC 4.0)

#### Article Info

Article Received: 07 September 2025, Article Revised: 27 September 2025, Article Accepted: 17 October 2025.

DOI: https://doi.org/10.5281/zenodo.17494402

#### \*Corresponding author:

## Dr. Ersin Akçam

Department Otorhinolaryngology, Afyonkarahisar Hospital, State Afyonkarahisar, Türkiye.

# ABSTRACT

**Objective:** This study aims to identify the risk factors for post-tonsillectomy hemorrhage (PTH). Materials and Methods: A retrospective analysis was conducted on 776 patients (624 children, 152 adults; 425 males, 351 females) who underwent tonsillectomy at the Düzce University Faculty of Medicine ENT Clinic between 2013 and 2018. Patients were evaluated based on age, gender, indication for surgery, tonsil size, presence of chronic diseases, and preoperative hemoglobin, platelet, and INR levels. Tonsillectomies were performed under general anesthesia using the cold dissection technique, with hemostasis achieved via bipolar cautery and suture ligation. PTH was managed with conservative or surgical methods. Statistical analysis was performed using Pearson Chi-square, Fisher-Freeman-Halton, and Fisher Exact tests (p<0.05 was considered significant). **Results:** The overall PTH incidence was 2.7% (0.14% in children, 7.8% in adults). Among 21 patients with PTH, 3 (14.2%) had primary hemorrhage, and 18 (85.8%) had secondary hemorrhage. In adults, the PTH rate was significantly higher in males (12%) compared to females (2.9%) (p=0.037). No significant association was found between PTH and indication for surgery, tonsil size, chronic diseases, or hematological parameters. Conservative treatment was applied in 52.3% of cases, while 47.7% required surgical intervention. The mean time to presentation was 5.5 days. Conclusion and Recommendations: Adult age and male gender are risk factors for PTH. Early diagnosis, hospitalization, intravenous access, and laboratory tests are critical in PTH management. Careful patient selection and postoperative follow-up are essential.

**KEYWORDS:** Hemorrhage, risk factors, tonsillectomy.

# 1. INTRODUCTION

Tonsillectomy is one of the most frequently performed procedures by otolaryngologists.[1] It is typically indicated for patients with recurrent tonsillitis or obstructive symptoms. [2] Although relatively safe, posttonsillectomy hemorrhage (PTH) is a potentially life-threatening complication. [3] PTH is classified as primary (occurring within 24 hours post-surgery, often related to surgical technique) or secondary (typically occurring within the first week, often due to damage to the

granulation tissue covering the tonsil bed).<sup>[1]</sup> The reported incidence of primary hemorrhage ranges from 0.2% to 2.2%, and secondary hemorrhage from 0.1% to 3%. In a large cohort study, Gysin et al. reported primary and secondary hemorrhage rates of 1% and 2.5%, respectively.<sup>[4]</sup> Numerous studies have investigated the causes of PTH. This study aims to examine potential risk factors for PTH.

<sup>&</sup>lt;sup>2</sup>Department of Otorhinolaryngology, Duzce Univercity Faculty of Medicine, Düzce, Türkiye.

#### 2. MATERIALS AND METHODS

This retrospective study included 776 patients (425 males, 351 females; aged 3–60 years) who underwent tonsillectomy at the Düzce University Faculty of Medicine ENT Clinic between January 2013 and December 2018. Of these, 624 (341 males, 282 females) were children (under 18 years), and 152 were adults.

All patients underwent a standardized physical examination, including otoscopy to assess the tympanic membrane and external auditory canal. Patients reporting hearing loss underwent tuning fork tests and, when necessary, audiometry and tympanometry. Anterior rhinoscopy was performed to evaluate nasal cavities, and oropharyngeal examination assessed the throat and tonsils. Patients with nasal obstruction due to concha hypertrophy or septal deviation identified during anterior rhinoscopy underwent endoscopic examination and were excluded from the study to ensure homogeneity and reliability of results.

Tonsillectomy indications included chronic or recurrent tonsillitis (at least 7 episodes in one year, 5 episodes per year for two years, or 3 episodes per year for three years), tonsillar hypertrophy causing sleep-disordered breathing (snoring and witnessed apnea), asymmetric tonsillar hypertrophy raising suspicion of malignancy, and halitosis. [5] Tonsillitis episodes required at least one of the following: body temperature >38°C, cervical lymphadenopathy, tonsillar exudate, or positive Group A beta-hemolytic streptococcus (GABHS) throat culture. [6] These criteria guided surgical decisions, considering the patient's clinical history and quality of life.

Potential risk factors for PTH, including gender, indication for surgery, tonsil size, presence of chronic diseases, and preoperative hemoglobin, platelet, and INR levels, were evaluated. Tonsillectomies were performed under general anesthesia using the cold dissection technique, with hemostasis achieved via bipolar cautery and suture ligation.

Postoperatively, all patients received oral amoxicillinclavulanic acid to prevent infection and paracetamol for pain control. No PTH was observed in the immediate postoperative period, and all patients recovered without requiring inpatient follow-up, supporting the efficacy and safety of the treatment protocol.

For patients presenting with PTH, the initial approach was conservative, including cessation of oral intake, intravenous fluid support, and, when clots were present, careful clot removal under topical or local anesthesia followed by cold water gargles. For severe or persistent bleeding, interventions under general anesthesia included local pressure, adrenaline injection, bipolar electrocautery, and/or suture ligation, tailored to the patient's clinical condition. This multi-step approach ensured effective bleeding control and patient safety.

#### 2.1. Ethical Considerations

This study was approved by the Düzce University Faculty of Medicine Institutional Ethics Committee (Approval No: 2019/115, Date: May 16, 2019) and conducted in accordance with the Helsinki Declaration.

# 2.2. Statistical Analysis

Descriptive statistics (mean, standard deviation, median, interquartile range, minimum, maximum, percentages) were calculated for all variables. Pearson Chi-square, Fisher-Freeman-Halton, and Fisher Exact tests were used to assess relationships between categorical variables, with p<0.05 considered significant.

#### 3. RESULTS

Between 2013 and 2018, 776 tonsillectomy and adenotonsillectomy procedures were performed at our clinic. Of these, 425 (54.7%) patients were female, 351 (45.3%) were male, with a mean age of  $11.7\pm12$  years. The cohort included 624 (80.4%) children and 152 (19.6%) adults. The overall PTH incidence was 2.7%, with 0.14% in children and 7.8% in adults. No significant difference was found between children and adults.

Among 21 patients with PTH, the mean age was 21.47±5.2 years (range: 8–29), with 9 (42.8%) children and 12 (57.2%) adults. Of these, 3 (14.2%) had primary hemorrhage, and 18 (85.8%) had secondary hemorrhage. No patients required blood transfusion, and coagulation tests were normal.

In adults, a significant gender difference was observed (p=0.037), with a higher PTH rate in males (12%) compared to females (2.9%) (Table 2). No significant associations were found between PTH and other variables, including indication for surgery, chronic diseases (asthma, atrial septal defect, arrhythmia, hypothyroidism, hyperactivity, psoriasis, diabetes mellitus, hypertension), or tonsil size (grades 1–4) in either children or adults (p>0.05 for all) (Tables 1 and 2).

Preoperative hemoglobin, platelet, and INR levels showed no significant association with primary or secondary PTH in either group (Tables 3 and 4).

Tonsillectomies were performed using the cold dissection technique to minimize tissue damage and postoperative complications. The mean time to presentation for PTH was 5.5 days (range: 1–10 days). Conservative treatment was applied in 52.3% of cases (11 patients), involving cessation of oral intake, intravenous fluids, clot removal under local anesthesia, and cold water gargles. Surgical intervention under general anesthesia, using bipolar electrocautery and/or absorbable sutures, was required in 47.7% of cases (10 patients). No patients required further surgical intervention, and no recurrent bleeding was observed, indicating the success of the treatment protocols.

| Table 1: Clinical and Demographic Characteristics of Pediatric Patients. |                                     |        |       |     |       |       |       |        |  |
|--------------------------------------------------------------------------|-------------------------------------|--------|-------|-----|-------|-------|-------|--------|--|
|                                                                          |                                     | Gender |       |     |       |       |       |        |  |
|                                                                          |                                     | M      |       | F   |       | Total |       | р      |  |
|                                                                          |                                     | n      | %     | n   | %     | n     | %     |        |  |
|                                                                          | OSAS                                | 92     | 26,9  | 73  | 25,9  | 165   | 26,4  |        |  |
|                                                                          |                                     |        | 10,5  | 26  | 9,2   | 62    | 9,9   |        |  |
|                                                                          | Recurrent Tonsillitis               | 36     | 0,0   | 0   | 0,0   | 0     | 0,0   |        |  |
|                                                                          | Halitosis                           | 0      | 0,3   | 1   | 0,4   | 2     | 0,3   | İ      |  |
| Reason for<br>Surgery                                                    | Asymmetric Tonsillar<br>Hypertrophy | 1      | 0,3   | 0   | 0,0   | 1     | 0,2   | 0,932  |  |
|                                                                          | History of<br>Peritonsillar Abscess | 1      | 62,0  | 182 | 64,5  | 394   | 63,1  |        |  |
|                                                                          | Recurrent Tonsillitis + OSAS        | 212    | 100,0 | 282 | 100,0 | 624   | 100,0 |        |  |
| Presence of                                                              | TOTAL                               | 342    | 95,6  | 275 | 97,5  | 602   | 96,5  |        |  |
| Chronic                                                                  |                                     |        | 4,4   | 7   | 2,5   | 22    | 3,5   | 0,199  |  |
| Disease                                                                  | No                                  | 327    | 100,0 | 282 | 100,0 | 624   | 100,0 |        |  |
|                                                                          |                                     |        | 16,7  | 0   | 0,0   | 1     | 11,1  |        |  |
|                                                                          | Yes                                 | 15     | 83,3  | 3   | 100,0 | 8     | 88,9  | -      |  |
|                                                                          | Total                               | 342    | 100,0 | 3   | 100,0 | 9     | 100,0 |        |  |
| PTH Group                                                                |                                     | •      | •     |     | •     |       | ·     | Primer |  |

| 24512 27 51111041 41           | nd Demographic Characteristics of | Gender |       |    |       |       |       |       |
|--------------------------------|-----------------------------------|--------|-------|----|-------|-------|-------|-------|
|                                |                                   | M      |       | F  |       | Total |       | р     |
|                                |                                   | n      | %     | n  | %     | n     | %     |       |
|                                | osas                              | 10     | 12,0  | 6  | 8,7   | 16    | 10,5  | 0,895 |
|                                | r.tonsillitis                     | 48     | 57,8  | 42 | 60,9  | 90    | 59,2  |       |
|                                | halitosis                         | 2      | 2,4   | 2  | 2,9   | 4     | 2,6   |       |
| reason for surgery             | asymmetric tonsillar hypertrophy  | 4      | 4,8   | 4  | 5,8   | 8     | 5,3   |       |
|                                | history of peritonsillar abscess  | 7      | 8,4   | 3  | 4,3   | 10    | 6,6   |       |
|                                | r.tonsillitis+osas                | 12     | 14,5  | 12 | 17,4  | 24    | 15,8  |       |
|                                | Total                             | 83     | 100,0 | 69 | 100,0 | 152   | 100,0 |       |
| presence of chronic<br>disease | No                                | 82     | 98,8  | 66 | 95,7  | 148   | 97,4  |       |
|                                | Yes                               | 1      | 1,2   | 3  | 4,3   | 4     | 2,6   | 0,330 |
|                                | Total                             | 83     | 100,0 | 69 | 100,0 | 152   | 100,0 |       |
| PTH_g                          | No                                | 73     | 88,0  | 67 | 97,1  | 140   | 92,1  |       |
|                                | Yes                               | 10     | 12,0  | 2  | 2,9   | 12    | 7,9   | 0,037 |
|                                | Total                             | 83     | 100,0 | 69 | 100,0 | 152   | 100,0 |       |

| Table 3: Preoperative Values of Pediatric Patients. |                     |                   |       |  |
|-----------------------------------------------------|---------------------|-------------------|-------|--|
| _                                                   |                     | pth_grp_          |       |  |
|                                                     |                     | Primary Secondary |       |  |
|                                                     | n                   | 1                 | 8     |  |
|                                                     | Median              | 2                 | 2     |  |
| Tonsil Grade                                        | Interquartile Range | 0                 | 1     |  |
|                                                     | Minimum             | 2                 | 1     |  |
|                                                     | Maximum             | 2                 | 3     |  |
|                                                     | n                   | 1                 | 8     |  |
|                                                     | Avaragwe            | 13                | 11,83 |  |
|                                                     | Standart Deviation  | ,                 | 1,12  |  |
| preop hgb                                           | Median              | 13                | 11,9  |  |
|                                                     | Interquartile Range | 0                 | 1,69  |  |
|                                                     | Minimum             | 13                | 9,9   |  |
|                                                     | Maximum             | 13                | 13,2  |  |
|                                                     | n                   | 1                 | 8     |  |
| preoop plt                                          | Avarage             | 336               | 325   |  |
|                                                     | Standart Deviation  | ,                 | 59    |  |

|                 | Median              | 336  | 346  |
|-----------------|---------------------|------|------|
|                 | Interquartile Range | 0    | 81   |
|                 | Minimum             | 336  | 220  |
|                 | Maximum             | 336  | 401  |
|                 | n                   | 1    | 8    |
|                 | Avarage             | 1,23 | 1,07 |
|                 | Standart Deviation  | ,    | 0,05 |
| preop inr       | Median              | 1,23 | 1,07 |
|                 | Interquartile Range | 0    | 0,09 |
|                 | Minimum             | 1,23 | 1,01 |
|                 | Maximum             | 1,23 | 1,13 |
|                 | n                   | 1    | 8    |
|                 | Avarage             | 1    | 6    |
|                 | Interquartile Range | ,    | 2    |
| kaçıncı gün tsk | Median              | 1    | 7    |
|                 | Interquartile Range | 0    | 1    |
|                 | Minimum             | 1    | 3    |
|                 | Maximum             | 1    | 8    |

| Table 4: Preoperative Values of Adult Patients. |                     |          |           |  |
|-------------------------------------------------|---------------------|----------|-----------|--|
|                                                 |                     | pth_grp_ |           |  |
|                                                 |                     | Primary  | Secondary |  |
| tonsil<br>grade                                 | n                   | 2        | 10        |  |
|                                                 | Median              | 1        | 2,5       |  |
|                                                 | Interquartile Range | 0        | 2         |  |
|                                                 | Minimum             | 1        | 1         |  |
|                                                 | Maximum             | 1        | 4         |  |
|                                                 | n                   | 2        | 10        |  |
|                                                 | Avarage             | 14       | 14,16     |  |
|                                                 | Standart Deviation  | 2,26     | 2,14      |  |
| preop hgb                                       | Median              | 14       | 14,1      |  |
|                                                 | Interquartile Range | 3,2      | 3,8       |  |
|                                                 | Minimum             | 12,4     | 11,2      |  |
|                                                 | Maximum             | 15,6     | 17,3      |  |
|                                                 | n                   | 2        | 10        |  |
|                                                 | Ortalama            | 231      | 256       |  |
|                                                 | Standart Deviation  | 63       | 89        |  |
| preoop plt                                      | Median              | 231      | 224       |  |
|                                                 | Interquartile Range | 89       | 65        |  |
|                                                 | Minimum             | 186      | 188       |  |
|                                                 | Maximum             | 275      | 486       |  |
|                                                 | n                   | 2        | 10        |  |
|                                                 | Avarage             | 0,97     | 1,08      |  |
|                                                 | Standart Deviation  | 0,08     | 0,16      |  |
| preop inr                                       | Median              | 0,97     | 1,02      |  |
|                                                 | Interquartile Range | 0,11     | 0,17      |  |
|                                                 | Minimum             | 0,91     | 0,95      |  |
|                                                 | Makximum            | 1,02     | 1,44      |  |
| l. a                                            | n                   | 2        | 10        |  |
|                                                 | Avarage             | 1        | 6         |  |
|                                                 | Standart Deviation  | 0        | 2         |  |
| kaçıncı<br>gün tsk                              | Median              | 1        | 7         |  |
| guii isk                                        | Interquartile Range | 0        | 2         |  |
|                                                 | Minimum             | 1        | 3         |  |
|                                                 | Maximum             | 1        | 10        |  |

#### 4. DISCUSSION

Despite advances in surgical techniques since ancient times, PTH remains a serious and potentially lifethreatening complication. It not only poses a medical challenge but also has significant psychological and societal impacts on patients, families, and healthcare providers, as well as financial implications.<sup>[7]</sup> PTH is the common and severe complication tonsillectomy. [7] Numerous studies have explored its risk factors, including age, gender, surgical technique, surgeon experience, recent infections, hematological intraoperative blood loss, abnormalities, postoperative blood pressure changes. [9,10] However. most studies have identified only a limited number of statistically significant factors<sup>[7,11]</sup>, highlighting the multifactorial nature of PTH and the challenges in predicting and preventing it.

PTH rates in the literature range from 0.3% to 13.9%, with some studies reporting rates as high as 18%. [11,12] In our study, the PTH incidence was 2.7%, near the lower end of the reported range, reflecting the efficacy of our surgical techniques, patient selection criteria, and postoperative care protocols. These findings suggest that PTH risk varies based on surgical and patient-related factors.

PTH is more common in adults than in children. A large study of 17,680 patients reported a significantly higher bleeding risk in individuals aged 12 and older compared to younger children. Our study found a PTH rate of 7.8% in adults and 0.14% in children, supporting the role of age as a key risk factor, possibly due to anatomical differences, vascular changes, or variations in healing processes. These results emphasize the need for agespecific surgical planning and postoperative monitoring.

PTH is classified as primary (within 24 hours) or secondary (after 24 hours). [14] Primary hemorrhages are typically linked to acute vessel injury during surgery, while secondary hemorrhages are associated with fibrinolysis or infection-related fibrin degradation. [11] A multicenter study of 17,480 patients reported a PTH rate of 1.5% (270 patients), with 128 primary and 142 secondary hemorrhages. [13] Other studies report primary hemorrhage rates of 1.2%–7% and secondary rates of 7%–9%. In our study, secondary hemorrhages predominated (85.8%), with 55.5% occurring in adults, suggesting that secondary hemorrhages are more common in adults and may be linked to age-related factors. This underscores the need for vigilant postoperative follow-up in adults.

PTH can be classified as minor or major based on severity. [9] Major hemorrhages, which are life-threatening, may require rehospitalization, urgent intervention, or repeat surgery. [10] In our study, no major hemorrhages were observed, reflecting the effectiveness of our surgical and postoperative protocols.

PTH often necessitates rehospitalization. Treatment varies based on bleeding severity, ranging from observation to surgical intervention under local or general anesthesia. In one study, all PTH patients were hospitalized, with primary hemorrhages treated conservatively and 46.3% of secondary hemorrhages managed conservatively, while 53.7% required surgical intervention. [14] Similarly, in our study, all PTH patients were hospitalized, with primary hemorrhages treated conservatively and 77.7% of secondary hemorrhages managed conservatively, while 22.3% required surgical intervention. These findings confirm that conservative treatment is often effective for secondary hemorrhages, but surgical intervention is sometimes necessary.

Secondary hemorrhages typically peak between days 5 and 10 post-surgery, though rare cases have been reported up to day 54. [14] One study reported an average presentation time of 5.9 days for PTH. [15] In our study, the mean presentation time was 5.5 days, consistent with the literature, indicating that secondary hemorrhages concentrate in the first week but may occur later. Primary hemorrhages, less common in children, typically occur within the first eight hours. These findings highlight the importance of understanding PTH timing for effective follow-up protocols.

The study was limited by being conducted at a single center, which may restrict the generalizability of the findings.

# 5. CONCLUSION

Post-tonsillectomy hemorrhage remains a serious and potentially life-threatening complication. Its management requires careful consideration of comorbidities and strategies to prevent mortality. Adherence to clinical guidelines and recommendations is critical to reducing PTH risk, encompassing proper surgical technique, patient selection, and postoperative care. All patients presenting with PTH should be hospitalized, even for observation, with close monitoring of vital signs (pulse, blood pressure, respiratory rate) and physical examination. Establishing intravenous access is essential for potential urgent interventions. Laboratory tests, including complete blood count, coagulation tests, and blood group analysis, are crucial for assessing bleeding severity, identifying coagulation disorders, and determining transfusion needs. These measures are vital for early diagnosis and comprehensive management to enhance patient safety and prevent severe outcomes.

All patients were evaluated for age, gender, indication for surgery, tonsil size, surgical technique, preoperative hemoglobin, platelet, and INR levels, and chronic diseases. No significant association was found between these factors and PTH, except for age and gender. Adult age and male gender should be carefully considered as risk factors for postoperative hemorrhage during preoperative planning.

#### 6. REFERENCES

- 1. Østvoll E, Sunnergren O, Ericsson E, et al. Mortality after tonsil surgery, a population study, covering eight years and 82,527 operations in Sweden. *Eur Arch Otorhinolaryngol*, 2015; 272(3): 737-743. doi:10.1007/s00405-014-3312-z
- Kontorinis G, Schwab B. Significance of advanced haemostasis investigation in recurrent, severe posttonsillectomy bleeding. *J Laryngol Otol*, 2011; 125(9): 952-957. doi:10.1017/S0022215111000879
- 3. Bellis JR, Pirmohamed M, Nunn AJ, et al. Dexamethasone and haemorrhage risk in paediatric tonsillectomy: a systematic review and meta-analysis. *Br J Anaesth*, 2014; 113(1): 23-42. doi:10.1093/bja/aeu152
- 4. Gysin C, Dulguerov P. Hemorrhage after tonsillectomy: does the surgical technique really matter?. *ORL J Otorhinolaryngol Relat Spec.*, 2013; 75(3): 123-132. doi:10.1159/000342314
- Kornblut AD. Non-neoplastic diseases of the tonsils and adenoids. In: Otolaryngology, 1991; 3: 2129-2147.
- 6. Özmen T, Gündüz R, Doğan H, Zoroğlu T, Acar D. Kronik bel ağrılı hastalarda kinezyofobi ve yaşam kalitesi arasındaki ilişki. Fırat Üniversitesi Sağlık Bilimleri Tıp Dergisi., 2016; 30(1): 001-004.
- Friedman M, Tanyeri H, La Rosa M, et al. Clinical predictors of obstructive sleep apnea. *Laryngoscope*, 1999; 109(12): 1901-1907. doi:10.1097/00005537-199912000-00002
- 8. Blakley BW. Post-tonsillectomy bleeding: how much is too much?. *Otolaryngol Head Neck Surg*, 2009; 140(3): 288-290. doi:10.1016/j.otohns.2008.12.005
- 9. McClelland L, Jones NS. Tonsillectomy: haemorrhaging ideas. *J Laryngol Otol*, 2005; 119(10): 753-758. doi:10.1258/002221505774481336
- 10. Arora R, Saraiya S, Niu X, Thomas RL, Kannikeswaran N. Post tonsillectomy hemorrhage: who needs intervention? *Int J Pediatr Otorhinolaryngol*, 2015; 79(2): 165-169. doi:10.1016/j.ijporl.2014.11.034
- 11. Çakır A, Boran C, Olgun Y, Erdağ TK. Tonsillektomi sonrası kanama: 10 yıllık deneyimimiz. Kulak Burun Bogaz Ihtis Derg, 2017; 27(1): 1.
- 12. Hopkins C, Geyer M, Topham J. Post-tonsillectomy haemorrhage: a 7-year retrospective study. *Eur Arch Otorhinolaryngol*, 2003; 260(8): 454-455. doi:10.1007/s00405-003-0609-8
- 13. Tomkinson A, Harrison W, Owens D, Harris S, McClure V, Temple M. Risk factors for postoperative hemorrhage following tonsillectomy. *Laryngoscope*, 2011; 121(2): 279-288. doi:10.1002/lary.21242
- 14. Saleh HA, Cain AJ, Mountain RE. Bipolar scissor tonsillectomy. *Clin Otolaryngol Allied Sci.*, 1999; 24(1): 9-12. doi:10.1046/j.1365-2273.1999.00200.x

- 15. Wall JJ, Tay KY. Postoperative Tonsillectomy Hemorrhage. *Emerg Med Clin North Am.*, 2018; 36(2): 415-426. doi:10.1016/j.emc.2017.12.009
- 16. Ahmad Z, de Silva N, Morton RP, Wood AB. Safety of day-stay tonsillectomy. *Indian J Otolaryngol Head Neck Surg.*, 2010; 62(2): 158-161. doi:10.1007/s12070-010-0032-6