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cancer getting worse. | think targeting them makes sense for new cancer
drugs. This study looked at some phenolic compounds to see how they bind
to a tyrosine kinase enzyme and what their drug properties might be, all
done on a computer. We used software like ChemDraw and ChemSketch to
get the ligand structures ready. Then docked them to the protein from PDB
ID 3ERT with PyRx and AutoDock. For the interactions between protein
and ligand, it was BIOVIA Discovery Studio and this tool called PLIP.
SwissADME helped predict if theyd work as drugs, like ADMET stuff. Out
of the compounds screened, chlorogenic acid stood out with the best
binding, at negative 6.1 kcal per mol. It made stable bonds with active site
residues, hydrogen ones, hydrophobic, and even pi pi stacking. That seems
pretty solid. The ADMET results showed okay pharmacokinetics, and it
followed Lipinskis Rule of Five. So chlorogenic acid could be a good
starting point, maybe test it for real as a tyrosine kinase blocker in cancer
treatment. Im not totally sure about the next steps, but it feels promising.
The whole in silico approach helped narrow it down without lab work yet.

KEYWORDS: Molecular docking; Tyrosine kinase; Chlorogenic acid; In-
silico drug design; ADMET; Drug-likeness.

1. INTRODUCTION

Cancer still poses a big health issue globally; in fact,
cancer incidence and mortality continue rising, yet
therapy approaches
witnessed. However, in conventional chemotherapy, lack

improvements in

Protein tyrosine kinases play a very important role as
regulators in cell signaling processes involving
proliferation, differentiation, and survival. Tyrosine
kinases have been associated with several malignancies,
leading to their increased attraction as potential

have been

of selectivity, toxicity, and the emergence of resistance
have often been encountered as some of the main
drawbacks. Hence, targeted therapies have attracted
considerable attention as promising approaches that
selectively target molecular pathways in cancer.

therapeutic targets in anti-cancer drug development. Tyr
kinase inhibition has proved successful in managing
several malignancies.

In-silico drug discovery methods, especially molecular
docking, have emerged as effective resources in the
early-stage screening of candidates for potential drugs.
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This is because it is possible to predict the affinity of
interaction between the ligand and protein molecules.

Phenolics, particularly those isolated from natural
sources, display various biological activities, such as
antioxidant and anticancer activities. Chlorogenic acid
and its phenolic analogs have been reported to possess
promising biological activities, but their binding affinity
towards the tyrosine kinase target has yet to be
investigated by in-silico approaches. This study aimed to
determine the molecular interaction and ADMET
property of some selected phenolics towards tyrosine
kinase by means of in-silico computations.

2. MATERIALS AND METHODS

2.1 Chemicals and Software

All such calculations performed in the course of this
study were conducted using various highly accepted and
validated tools in the cheminformatics and molecular
modeling field.

ChemDraw and ChemSketch software packages were
utilized in the design as well as depiction of the two-
dimensional chemical structural models of the preferred
phenolic compounds. The softwares employed in the
design of the chemical structural models enabled the
creation of precise designs of molecular frameworks,
functional groups, as well as bonding arrangements. The
designs were employed as inputs in the optimizations
prior to the molecular docking analysis.

The PubChem database was used as a main resource for
searching for the ligand structures and basic
physicochemical properties required for the ligands of
interest. Furthermore, PubChem ensures the integrity of
molecular details for ligands employed in computations.

The three-dimensional crystal structure of target protein
tyrosine kinase was taken from the Protein Data Bank,
which is a repository of experimentally determinated
protein structures. For this study, protein structure 3ERT
was chosen because of its relevance to tyrosine kinase
function. Protein preparation included the removal of
water molecules and crystallized ligands to prevent
interference in protein-target binding, and addition of
polar hydrogens to facilitate accurate binding.

PyRx was used as a docking and virtual screening tool.
PyRx combines the functionality of AutoDock and
AutoDock Vina and provides tools for preparation of
ligand and protein files, grid box setup, and execution of
docking procedures. In this work, PyRx software was
used for initial ligand molecule docking and for effective
management of ligand and protein interaction.

AutoDock software was employed for detailed
molecular docking studies to predict the favored binding
orientation and binding affinity of ligands within the
active site of the tyrosine kinase enzyme. In this
software, the ligand conformations were explored by the

use of a Lamarckian Genetic Algorithm, and ligand-
protein interactions were calculated based on the binding
energy (kcal/mol). From the docking scores, the most
potent ligand was determined.

The software used for the interpretation of docked
complexes of protein/ligand was BIOVIA Discovery
Studio. This software allowed for the 2D and 3D
representation of binding models. The amino acid
residues that take part in binding were identifiable
through this software. The important molecular
interactions including hydrogen bonding, hydrophobic,
and aromatic interactions were also analyzed through this
software.

The Protein-Ligand Interaction Profiler, named PLIP,
was employed to automate the identification and
classification of protein-ligand interactions. PLIP
offered information on hydrogen bonds, hydrophobic
interactions, electrostatic interactions, and 7n-7 stacking,
thus aiding in the qualitative evaluation of the results
achieved through docking.

SwissADME was employed for making predictions
regarding pharmacokinetic properties and drug likeness
of the selected chemicals. ADMET parameters were
considered, and Lipinski’s Rule of Five was used to
predict the bioavailability of the ligands in terms of their
ability to act as drugs.

2.2 Ligand Preparation

The phenolic compounds of interest for this study have
been shortlisted for their significance to biological
processes. The chemical structures of these ligands can
either be fetched from the PubChem database or can be
designed manually using the software of ChemDraw and
ChemSketch. These structures have been screened
carefully for 2D to assure correct atom representation,
connectivity of bonds, and functional groups.

The structures of the prepared ligands were optimized to
generate energy-stable conformations that could be used
in molecular docking. Energy minimization was carried
out to remove steric clashes and to optimize the
geometries of the ligands before conducting docking
studies. The optimized structures of the ligands were
then transformed to the required file formats for use in
the docking software.

Hydrogen atoms on the polar sites of the ligands were
added, and the use of Gasteiger charges was employed to
correctly model the electrostatics during the ligand
docking analysis task. Rotatable bonds were set to
incorporate the ligand flexibility during the ligand
docking analysis task. Files were prepared correctly
before being subjected to ligand molecule docking
analysis.

This was followed by a ligand preparation method that
ensured that all ligands tested were in their suitable and
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standardized form, thus enhancing the reproducibility
and accuracy of molecular docking outcomes.

2.3 Protein Preparation

The three-dimensional structure of the target protein,
tyrosine kinase, was obtained from the Protein Data
Bank (PDB) with the accession number 3ERT. This
target protein structure was selected depending on how
closely associated it is with the activity of tyrosine
kinases.

Protein preparation procedures were done to achieve a
relevant biologically constrained structural conformation
necessary for docking. First, all water molecules initially
found within the crystal structural formation were
eliminated because such water molecules could
potentially inhibit ligand interaction and hence affect
dock accuracy. Ligands that were co-crystallized within
the enzyme structure were also deleted.

Later, polar hydrogen atoms were incorporated into the
protein model in order to effectively model the
interaction of hydrogen bonds in the docking process.
Finally, appropriate charges were assigned, and the
protein model was thoroughly investigated for integrity.
This prepared protein model was then saved in the
correct file format for usage in the docking tool.

This protein preparation was done systematically to
ensure that the target enzyme is prepared in the optimal
manner, and this increased the accuracy of the results
obtained from the molecular docking calculations.

2.4 Molecular Docking

Molecular docking studies were performed using
AutoDock as implemented within the PyRx virtual
screening platform to explore the binding affinity and
interaction pattern of the selected ligands with the
tyrosine kinase enzyme. In the process, PyRx was
employed to facilitate ligand and protein preparation,
grid box generation, and execution of docking
simulations.

A grid box was defined around the active site of the
protein to ensure proper accommodation of the ligands
within the binding pocket. The parameters of the grid
were chosen in such a way that the entire region of the
active site would be covered, leaving enough space for
ligand flexibility during docking. Docking simulations
were then carried out to predict the most favorable
orientation of each ligand in binding within the active
site of the protein.

AutoDock uses a Lamarckian genetic algorithm for the
exploration of possible ligand conformations and
estimates the interactions of ligand-protein interactions
using a scoring function. Docking results are expressed
in terms of binding energy in kcal/mol. More negative
binding energy indicates strong binding affinity. From

each ligand, the best docking pose is chosen based on
lowest binding energy and favorable interaction profile.

This docking protocol enabled the relative assessment of
the binding affinity of the selected compounds, thus
facilitating identification of the most promising ligand
for further interaction studies in ADMET analysis.

2.5 Interaction Analysis

The resulting protein/ligand complexes obtained through
docking simulations were analyzed in-depth by BIOVIA
Discovery Studio and Protein-Ligand Interaction Profiler
(PLIP) software to understand interactions at a molecular
level in respect to ligand stabilization in the active site of
tyrosine kinase enzymes.

The two-dimensional (2D) and three-dimensional (3D)
structures of the docked compounds were generated
using BIOVIA Discovery Studio, facilitating easy
observation of the orientation of the ligands and the
amino acid residues that are responsible for the
interactions. The major interactions, such as hydrogen
bonding, hydrophobic interactions, and aromatic
interactions, were studied to reveal the mode of binding
of the ligands in the protein active site.

PLIP was used for automatic binding site detection and
classification of protein-ligand interactions. PLIP offered
detailed information about hydrogen bonds, hydrophobic
interactions, electrostatic interactions, and 7-7 stacking
interactions along with their corresponding interacting
amino acid residues. Automatic interaction profiling by
PLIP facilitated qualitative interpretation of docking
outcomes.

The joint application of BIOVIA Discovery Studio and
PLIP facilitated the study of ligand and protein
interaction, thus aiding in the determination of stable and
relevant ligand-binding modes.

2.6 ADMET Prediction

The pharmacokinetic properties and drug-likeness
properties of selected phenolic compounds were studied
using the SwissADME online prediction tool. The
SwissADME is a valuable tool for estimating the
ADMET properties of compounds using a computational
approach. ADMET properties are necessary in drug
discovery research.

In this study, SwissADME was employed to estimate
important  physicochemical and  pharmacokinetic
properties such as molecular weight, lipophilicity,
hydrogen bond donor/acceptors, and oral bioavailability.
Drug likeliness was examined by employing Lipinski’s
Rule of Five for evaluating the potential of the molecules
for oral intake.

Moreover, the SwissADME tool was employed to
predict some pharmacokinetic properties including
gastrointestinal absorption. The pharmacokinetic profiles
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predicted by SwissADME helped in verifying the
docking results as well as in screening candidates
showing desired pharmacokinetic profiles.

This ADMET assessment gave a initial glimpse at drug-
likeness properties for the selected chemical structure
candidates. This helped in picking possible lead
molecules.

3. RESULTS

3.1 Molecular Docking Results

The results of molecular docking studies using
AutoDock are presented in Table 1. The screened
phenolic compounds varied in binding affinity against
the tyrosine kinase enzyme, which revealed variations in
their binding potential with the active site of target
proteins. The binding affinity was measured in terms of
binding energy (in kcal/mol), and higher negative values
revealed higher binding affinity.

Among all tested compounds, chlorogenic acid (3A)
showed the highest binding affinity, having a docking

score of -6.1 kcal/mol, indicating strong interaction with
the tyrosine kinase active site. The binding affinity was
found to be comparable for p-coumaric acid (3C) having
a docking score -6.1 kcal/mol, syringic acid (3B), and
kaempferol (3G) having a binding energy of -6.0
kcal/mol. The moderate binding affinities were found for
luteolin (3H) and quercetin (3F) having docking scores -
5.9 and -5.6 kcal/mol, respectively.

On the other hand, Syringaldehyde (3D) and Ascorbic
acid (3E) have shown lower binding affinity, with a
binding score of —-2.1 kcal/mol. Moreover, for Caffeic
acid (31) and Myricetin (3J), binding scores could not be
derived under the specified docking conditions and
hence, these values have been excluded.

For docking studies, it is determined that chlorogenic
acid (3A) is the lead ligand. This is followed by protein-
ligand interaction analyses. The subsequent step is
ADMET evaluation.

Table 1: Molecular Docking Results of Selected Phenolic Compounds Against Tyrosine Kinase (PDB ID: 3ERT)

Compound Name | Compound Code | Binding Affinity (kcal/mol)
Chlorogenic Acid 3A -6.1
Syringic Acid 3B -6.0
p-Coumaric Acid 3C -6.1
Syringaldehyde 3D -2.1
Ascorbic Acid 3E -2.1
Quercetin 3F -5.6
Kaempferol 3G -6.0
Luteolin 3H -5.9
Caffeic Acid 3l -4.5
Myricetin 3J -5.3

3.2 Protein—Ligand Interaction Analysis
Protein-ligand analysis of the docked model of
chlorogenic acid (3A) and the tyrosine kinase enzyme
protein (PDB code: 3ERT) was carried out by PLIP and
BIOVIA Discovery Studio. This analysis indicated the
presence of several non-covalent bonding interactions to
stabilize the protein-ligand complex (Table 2).

Chlorogenic acid made a total of four hydrogen bonds
with crucial amino residues ASP83, GLUB88, ASN84,
and SER80, with the bond lengths ranging from 2.0 to
2.8 A, representing a high level of favorable interactions
between the ligand and amino residues. In addition, one
carbon-hydrogen bond was made with ALA82 with a
bond length of about 3.7 A.

Electrostatic interaction was found between the carboxyl
group of chlorogenic acid and residue ASP80 with a
distance of about 4.4 A. Additionally, m-m stacking
interaction existed between the aromatic ring of
chlorogenic acid and TYR88 with a distance of about 3.9
A, which aided in proving aromatic interaction at the
active site.

Hydrophobic interactions were also observed, and these
involved amino acids ALA84, LEU86, and VALS1, with
distances of 3.5 to 4.2 A. Hydrophobic interactions
increase the stability of the ligand-protein complexes.

The coexistence of several hydrogen bonds,
hydrophobic, electrostatic, and ©-n stacking interactions
reveals a stable binding conformation of chlorogenic acid
in the active site of the tyrosine kinase enzyme.

WWW.wjaps.com

72



World Journal of Advance Pharmaceutical Sciences

WJAPS, Volume 3, Issue 2, 2026

Table 2: Protein—Ligand Interaction Analysis of Chlorogenic Acid (3A) with Tyrosine Kinase (PDB ID: 3ERT)

Interaction Type No. of Bonds Protein Residues Involved Ligand Atom / Group Dls(fg)nce
Hydrogen bonding 4 ASP83, GLU88, ASN84, SER80 | O—H / O groups 20-28
Carbon-hydrogen bond 1 ALAS82 Ring carbon ~3.7
Electrostatic interaction 1 ASP80 Carboxyl group ~4.4
n—T stacking 1 TYRS88 Aromatic ring ~3.9
Hydrophobic interaction 3 ALA84, LEU86, VALS1 Aromatic ring hydrogens | 3.5-4.2

3.3 ADMET Analysis

To assess the pharmacokinetics attributes and drug-
likeness scores for the identified lead compound,
chlorogenic acid (3A), the SwissADME prediction tool
was employed. Per ADMET analysis, chlorogenic acid
satisfied the criteria outlined in Lipinski’s Rule of Five,
implying its ability to act as an orally active drug
candidate.

The estimated physicochemical properties such as
molecular weight, number of hydrogen bond donors,
number of hydrogen bond acceptors, and lipophilicity
were well within the allowed limits for an orally active
molecule. The prediction by SwissADME also revealed
optimal gastrointestinal absorption properties, supporting
its potential for bioavailability.

In general, the ADMET data indicate that chlorogenic
acid has reasonable pharmacokinetic properties, and this
is consistent with the molecular docking and interaction
study results. Based on this data, the selection of
chlorogenic acid as a candidate drug is justified.

4. DISCUSSION

This study looked at how some phenolic compounds
might interact with the tyrosine kinase enzyme. We used
molecular docking and other computer methods, plus
checking ADMET stuff to see if they could work as
drugs. The docking showed different binding strengths
for each compound. It really depends on their structures,
I guess.

Compounds with lots of hydroxyl groups and those ring
systems did better. The hydroxyls can make hydrogen
bonds with amino acids in the active site. And the
aromatic parts help with hydrophobic stuff and pi-pi
stacking. That stabilizes things, making the binding
stronger. Its kind of key for how ligands stick to proteins.

Chlorogenic acid came out on top. It had the best affinity
and interactions. It formed hydrogen bonds with ASP83,
GLU88, ASN84, SER80. Then hydrophobic ones with
ALA84, LEU86, VALS81. And pi-pi with TYR88. There
was even some electrostatic help. All that together means
its probably stable in there.

This matches what other studies say about hydrogen
bonds, hydrophobics, and stacking for kinase inhibition.
Like, syringaldehyde and ascorbic acid did not do well
because they lack those groups. So the structure really
matters, as we saw.

ADMET predictions

from SwissADME

showed

chlorogenic acid follows Lipinskis Rule of Five. Its
pharmacokinetics look okay. That fits with the docking,
so maybe its worth looking into more as a drug
candidate.

But these are just computer results. They dont cover
everything in real biology. It feels like we need in-vitro
and in-vivo tests to really check if chlorogenic acid can
inhibit kinases or fight cancer. Some people might think
its promising already, but | am not totally sure without
experiments.

5. CONCLUSION

This study looks at chlorogenic acid in a computer way,
and it seems like it could be a good phenolic compound
for targeting the tyrosine kinase enzyme. The molecular
docking showed that it had one of the best binding
affinities out of the compounds we picked, which means
it interacts strongly with the active site of the protein. |
think the detailed analysis of how the protein and ligand
interact points to stability from non-covalent things, like
hydrogen bonds and hydrophobic interactions, plus
electrostatic ones and pi-pi stacking with important
amino acids that help kinase activity.

Chlorogenic acid has these multiple hydroxyl groups and
aromatic rings, and that probably helps a lot with those
interactions, making the binding more stable in the active
site. It reminds me of what Ive read about structure-
interaction relationships for kinase inhibitors, where
hydrogen bonding and hydrophobic contacts really
matter for how well they bind. Sometimes it gets a bit
confusing with all these details.

On top of the docking results, the ADMET predictions
from SwissADME say chlorogenic acid fits Lipinskis
Rule of Five, and it has okay drug-likeness along with
pharmacokinetic properties. Those are important for
spotting potential leads that might work orally and go
further in development. Not everything is perfect though.

Putting it all together, the docking, interactions, and
ADMET stuff suggest chlorogenic acid could be a lead
for more research. But these are just computational
predictions, so experimental stuff like in-vitro assays for
enzyme inhibition, cell-based anticancer tests, and in-
vivo evaluations need to happen to really check if its
useful as an anticancer agent targeting tyrosine kinase.
That part feels like it needs more work to settle.
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