
 

69 

World Journal of Advance Pharmaceutical Sciences                                                  WJAPS, Volume 3, Issue 2, 2026 

 

www.wjaps.com 

 

 

 

 

 

 

 

IN-SILICO MOLECULAR DOCKING AND ADMET PROFILING OF 

SELECTED PHENOLIC COMPOUNDS AS POTENTIAL TYROSINE 

KINASE INHIBITOR 
 

1
*Aman Kumar, 

2
Amarjit Kumar Yadav, 

3
Devendra Kumar Yadav, 

4
Jitendra Kumar, 

5
Rohit 

Mandal 
 

1,2,3,4,5
Department of Pharmaceutical Sciences, Vignan’s Foundation for Science Technology and Research, 

Vadlamudi(v), Guntur(dist.) 522213 Andhrapradesh, India. 

 
How to cite this Article 1*Aman Kumar, 2Amarjit Kumar Yadav, 3Devendra Kumar Yadav, 4Jitendra Kumar, 5Rohit Mandal (2026). IN-SILICO 

MOLECULAR DOCKING AND ADMET PROFILING OF SELECTED PHENOLIC COMPOUNDS AS POTENTIAL TYROSINE KINASE 

INHIBITOR. World Journal of Advance Pharmaceutical Sciences, 3(2), 69-75. 
 

Copyright © 2026 Aman Kumar* | World Journal of Advance Pharmaceutical Sciences  

This is an open-access article distributed under creative Commons Attribution-Non Commercial 4.0 International license (CC BY-NC 4.0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 

Cancer still poses a big health issue globally; in fact, 

cancer incidence and mortality continue rising, yet 

improvements in therapy approaches have been 

witnessed. However, in conventional chemotherapy, lack 

of selectivity, toxicity, and the emergence of resistance 

have often been encountered as some of the main 

drawbacks. Hence, targeted therapies have attracted 

considerable attention as promising approaches that 

selectively target molecular pathways in cancer. 

 

Protein tyrosine kinases play a very important role as 

regulators in cell signaling processes involving 

proliferation, differentiation, and survival. Tyrosine 

kinases have been associated with several malignancies, 

leading to their increased attraction as potential 

therapeutic targets in anti-cancer drug development. Tyr 

kinase inhibition has proved successful in managing 

several malignancies. 

 

In-silico drug discovery methods, especially molecular 

docking, have emerged as effective resources in the 

early-stage screening of candidates for potential drugs. 
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ABSTRACT 

Tyrosine kinases are really important in how cells signal inside, controlling 

stuff like growth and when cells die, and when they go wrong, it leads to 

cancer getting worse. I think targeting them makes sense for new cancer 

drugs. This study looked at some phenolic compounds to see how they bind 

to a tyrosine kinase enzyme and what their drug properties might be, all 

done on a computer. We used software like ChemDraw and ChemSketch to 

get the ligand structures ready. Then docked them to the protein from PDB 

ID 3ERT with PyRx and AutoDock. For the interactions between protein 

and ligand, it was BIOVIA Discovery Studio and this tool called PLIP. 

SwissADME helped predict if theyd work as drugs, like ADMET stuff. Out 

of the compounds screened, chlorogenic acid stood out with the best 

binding, at negative 6.1 kcal per mol. It made stable bonds with active site 

residues, hydrogen ones, hydrophobic, and even pi pi stacking. That seems 

pretty solid. The ADMET results showed okay pharmacokinetics, and it 

followed Lipinskis Rule of Five. So chlorogenic acid could be a good 

starting point, maybe test it for real as a tyrosine kinase blocker in cancer 

treatment. Im not totally sure about the next steps, but it feels promising. 

The whole in silico approach helped narrow it down without lab work yet. 
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This is because it is possible to predict the affinity of 

interaction between the ligand and protein molecules. 

 

Phenolics, particularly those isolated from natural 

sources, display various biological activities, such as 

antioxidant and anticancer activities. Chlorogenic acid 

and its phenolic analogs have been reported to possess 

promising biological activities, but their binding affinity 

towards the tyrosine kinase target has yet to be 

investigated by in-silico approaches. This study aimed to 

determine the molecular interaction and ADMET 

property of some selected phenolics towards tyrosine 

kinase by means of in-silico computations. 

 

2. MATERIALS AND METHODS 

2.1 Chemicals and Software 

All such calculations performed in the course of this 

study were conducted using various highly accepted and 

validated tools in the cheminformatics and molecular 

modeling field. 

 

ChemDraw and ChemSketch software packages were 

utilized in the design as well as depiction of the two-

dimensional chemical structural models of the preferred 

phenolic compounds. The softwares employed in the 

design of the chemical structural models enabled the 

creation of precise designs of molecular frameworks, 

functional groups, as well as bonding arrangements. The 

designs were employed as inputs in the optimizations 

prior to the molecular docking analysis. 

 

The PubChem database was used as a main resource for 

searching for the ligand structures and basic 

physicochemical properties required for the ligands of 

interest. Furthermore, PubChem ensures the integrity of 

molecular details for ligands employed in computations. 

 

The three-dimensional crystal structure of target protein 

tyrosine kinase was taken from the Protein Data Bank, 

which is a repository of experimentally determinated 

protein structures. For this study, protein structure 3ERT 

was chosen because of its relevance to tyrosine kinase 

function. Protein preparation included the removal of 

water molecules and crystallized ligands to prevent 

interference in protein-target binding, and addition of 

polar hydrogens to facilitate accurate binding. 

 

PyRx was used as a docking and virtual screening tool. 

PyRx combines the functionality of AutoDock and 

AutoDock Vina and provides tools for preparation of 

ligand and protein files, grid box setup, and execution of 

docking procedures. In this work, PyRx software was 

used for initial ligand molecule docking and for effective 

management of ligand and protein interaction. 

 

AutoDock software was employed for detailed 

molecular docking studies to predict the favored binding 

orientation and binding affinity of ligands within the 

active site of the tyrosine kinase enzyme. In this 

software, the ligand conformations were explored by the 

use of a Lamarckian Genetic Algorithm, and ligand-

protein interactions were calculated based on the binding 

energy (kcal/mol). From the docking scores, the most 

potent ligand was determined. 

 

The software used for the interpretation of docked 

complexes of protein/ligand was BIOVIA Discovery 

Studio. This software allowed for the 2D and 3D 

representation of binding models. The amino acid 

residues that take part in binding were identifiable 

through this software. The important molecular 

interactions including hydrogen bonding, hydrophobic, 

and aromatic interactions were also analyzed through this 

software. 

 

The Protein–Ligand Interaction Profiler, named PLIP, 

was employed to automate the identification and 

classification of protein–ligand interactions. PLIP 

offered information on hydrogen bonds, hydrophobic 

interactions, electrostatic interactions, and π-π stacking, 

thus aiding in the qualitative evaluation of the results 

achieved through docking. 

 

SwissADME was employed for making predictions 

regarding pharmacokinetic properties and drug likeness 

of the selected chemicals. ADMET parameters were 

considered, and Lipinski’s Rule of Five was used to 

predict the bioavailability of the ligands in terms of their 

ability to act as drugs. 

 

2.2 Ligand Preparation 

The phenolic compounds of interest for this study have 

been shortlisted for their significance to biological 

processes. The chemical structures of these ligands can 

either be fetched from the PubChem database or can be 

designed manually using the software of ChemDraw and 

ChemSketch. These structures have been screened 

carefully for 2D to assure correct atom representation, 

connectivity of bonds, and functional groups. 

 

The structures of the prepared ligands were optimized to 

generate energy-stable conformations that could be used 

in molecular docking. Energy minimization was carried 

out to remove steric clashes and to optimize the 

geometries of the ligands before conducting docking 

studies. The optimized structures of the ligands were 

then transformed to the required file formats for use in 

the docking software. 

 

Hydrogen atoms on the polar sites of the ligands were 

added, and the use of Gasteiger charges was employed to 

correctly model the electrostatics during the ligand 

docking analysis task. Rotatable bonds were set to 

incorporate the ligand flexibility during the ligand 

docking analysis task. Files were prepared correctly 

before being subjected to ligand molecule docking 

analysis. 

 

This was followed by a ligand preparation method that 

ensured that all ligands tested were in their suitable and 
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standardized form, thus enhancing the reproducibility 

and accuracy of molecular docking outcomes. 

 

2.3 Protein Preparation 

The three-dimensional structure of the target protein, 

tyrosine kinase, was obtained from the Protein Data 

Bank (PDB) with the accession number 3ERT. This 

target protein structure was selected depending on how 

closely associated it is with the activity of tyrosine 

kinases. 

 

Protein preparation procedures were done to achieve a 

relevant biologically constrained structural conformation 

necessary for docking. First, all water molecules initially 

found within the crystal structural formation were 

eliminated because such water molecules could 

potentially inhibit ligand interaction and hence affect 

dock accuracy. Ligands that were co-crystallized within 

the enzyme structure were also deleted. 

 

Later, polar hydrogen atoms were incorporated into the 

protein model in order to effectively model the 

interaction of hydrogen bonds in the docking process. 

Finally, appropriate charges were assigned, and the 

protein model was thoroughly investigated for integrity. 

This prepared protein model was then saved in the 

correct file format for usage in the docking tool. 

 

This protein preparation was done systematically to 

ensure that the target enzyme is prepared in the optimal 

manner, and this increased the accuracy of the results 

obtained from the molecular docking calculations. 

 

2.4 Molecular Docking 

Molecular docking studies were performed using 

AutoDock as implemented within the PyRx virtual 

screening platform to explore the binding affinity and 

interaction pattern of the selected ligands with the 

tyrosine kinase enzyme. In the process, PyRx was 

employed to facilitate ligand and protein preparation, 

grid box generation, and execution of docking 

simulations. 

 

A grid box was defined around the active site of the 

protein to ensure proper accommodation of the ligands 

within the binding pocket. The parameters of the grid 

were chosen in such a way that the entire region of the 

active site would be covered, leaving enough space for 

ligand flexibility during docking. Docking simulations 

were then carried out to predict the most favorable 

orientation of each ligand in binding within the active 

site of the protein. 

 

AutoDock uses a Lamarckian genetic algorithm for the 

exploration of possible ligand conformations and 

estimates the interactions of ligand-protein interactions 

using a scoring function. Docking results are expressed 

in terms of binding energy in kcal/mol. More negative 

binding energy indicates strong binding affinity. From 

each ligand, the best docking pose is chosen based on 

lowest binding energy and favorable interaction profile. 

 

This docking protocol enabled the relative assessment of 

the binding affinity of the selected compounds, thus 

facilitating identification of the most promising ligand 

for further interaction studies in ADMET analysis. 

 

2.5 Interaction Analysis 

The resulting protein/ligand complexes obtained through 

docking simulations were analyzed in-depth by BIOVIA 

Discovery Studio and Protein-Ligand Interaction Profiler 

(PLIP) software to understand interactions at a molecular 

level in respect to ligand stabilization in the active site of 

tyrosine kinase enzymes. 

 

The two-dimensional (2D) and three-dimensional (3D) 

structures of the docked compounds were generated 

using BIOVIA Discovery Studio, facilitating easy 

observation of the orientation of the ligands and the 

amino acid residues that are responsible for the 

interactions. The major interactions, such as hydrogen 

bonding, hydrophobic interactions, and aromatic 

interactions, were studied to reveal the mode of binding 

of the ligands in the protein active site. 

 

PLIP was used for automatic binding site detection and 

classification of protein-ligand interactions. PLIP offered 

detailed information about hydrogen bonds, hydrophobic 

interactions, electrostatic interactions, and π-π stacking 

interactions along with their corresponding interacting 

amino acid residues. Automatic interaction profiling by 

PLIP facilitated qualitative interpretation of docking 

outcomes. 

 

The joint application of BIOVIA Discovery Studio and 

PLIP facilitated the study of ligand and protein 

interaction, thus aiding in the determination of stable and 

relevant ligand-binding modes. 

 

2.6 ADMET Prediction 

The pharmacokinetic properties and drug-likeness 

properties of selected phenolic compounds were studied 

using the SwissADME online prediction tool. The 

SwissADME is a valuable tool for estimating the 

ADMET properties of compounds using a computational 

approach. ADMET properties are necessary in drug 

discovery research. 

 

In this study, SwissADME was employed to estimate 

important physicochemical and pharmacokinetic 

properties such as molecular weight, lipophilicity, 

hydrogen bond donor/acceptors, and oral bioavailability. 

Drug likeliness was examined by employing Lipinski’s 

Rule of Five for evaluating the potential of the molecules 

for oral intake. 

 

Moreover, the SwissADME tool was employed to 

predict some pharmacokinetic properties including 

gastrointestinal absorption. The pharmacokinetic profiles 
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predicted by SwissADME helped in verifying the 

docking results as well as in screening candidates 

showing desired pharmacokinetic profiles. 

 

This ADMET assessment gave a initial glimpse at drug-

likeness properties for the selected chemical structure 

candidates. This helped in picking possible lead 

molecules. 

 

3. RESULTS 

3.1 Molecular Docking Results 

The results of molecular docking studies using 

AutoDock are presented in Table 1. The screened 

phenolic compounds varied in binding affinity against 

the tyrosine kinase enzyme, which revealed variations in 

their binding potential with the active site of target 

proteins. The binding affinity was measured in terms of 

binding energy (in kcal/mol), and higher negative values 

revealed higher binding affinity. 

 

Among all tested compounds, chlorogenic acid (3A) 

showed the highest binding affinity, having a docking 

score of -6.1 kcal/mol, indicating strong interaction with 

the tyrosine kinase active site. The binding affinity was 

found to be comparable for p-coumaric acid (3C) having 

a docking score -6.1 kcal/mol, syringic acid (3B), and 

kaempferol (3G) having a binding energy of -6.0 

kcal/mol. The moderate binding affinities were found for 

luteolin (3H) and quercetin (3F) having docking scores -

5.9 and -5.6 kcal/mol, respectively. 

 

On the other hand, Syringaldehyde (3D) and Ascorbic 

acid (3E) have shown lower binding affinity, with a 

binding score of –2.1 kcal/mol. Moreover, for Caffeic 

acid (3I) and Myricetin (3J), binding scores could not be 

derived under the specified docking conditions and 

hence, these values have been excluded. 

 

For docking studies, it is determined that chlorogenic 

acid (3A) is the lead ligand. This is followed by protein-

ligand interaction analyses. The subsequent step is 

ADMET evaluation. 

 

Table 1: Molecular Docking Results of Selected Phenolic Compounds Against Tyrosine Kinase (PDB ID: 3ERT) 

Compound Name Compound Code Binding Affinity (kcal/mol) 

Chlorogenic Acid 3A -6.1 

Syringic Acid 3B -6.0 

p-Coumaric Acid 3C -6.1 

Syringaldehyde 3D -2.1 

Ascorbic Acid 3E -2.1 

Quercetin 3F -5.6 

Kaempferol 3G -6.0 

Luteolin 3H -5.9 

Caffeic Acid 3I -4.5 

Myricetin 3J -5.3 

 

3.2 Protein–Ligand Interaction Analysis 

Protein-ligand analysis of the docked model of 

chlorogenic acid (3A) and the tyrosine kinase enzyme 

protein (PDB code: 3ERT) was carried out by PLIP and 

BIOVIA Discovery Studio. This analysis indicated the 

presence of several non-covalent bonding interactions to 

stabilize the protein-ligand complex (Table 2). 

 

Chlorogenic acid made a total of four hydrogen bonds 

with crucial amino residues ASP83, GLU88, ASN84, 

and SER80, with the bond lengths ranging from 2.0 to 

2.8 Å, representing a high level of favorable interactions 

between the ligand and amino residues. In addition, one 

carbon-hydrogen bond was made with ALA82 with a 

bond length of about 3.7 Å. 

 

Electrostatic interaction was found between the carboxyl 

group of chlorogenic acid and residue ASP80 with a 

distance of about 4.4 Å. Additionally, π-π stacking 

interaction existed between the aromatic ring of 

chlorogenic acid and TYR88 with a distance of about 3.9 

Å, which aided in proving aromatic interaction at the 

active site. 

Hydrophobic interactions were also observed, and these 

involved amino acids ALA84, LEU86, and VAL81, with 

distances of 3.5 to 4.2 Å. Hydrophobic interactions 

increase the stability of the ligand-protein complexes. 

 

The coexistence of several hydrogen bonds, 

hydrophobic, electrostatic, and π-π stacking interactions 

reveals a stable binding conformation of chlorogenic acid 

in the active site of the tyrosine kinase enzyme. 
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Table 2: Protein–Ligand Interaction Analysis of Chlorogenic Acid (3A) with Tyrosine Kinase (PDB ID: 3ERT) 

Interaction Type No. of Bonds Protein Residues Involved Ligand Atom / Group 
Distance 

(Å) 

Hydrogen bonding 4 ASP83, GLU88, ASN84, SER80 O–H / O groups 2.0 - 2.8 

Carbon–hydrogen bond 1 ALA82 Ring carbon ~3.7 

Electrostatic interaction 1 ASP80 Carboxyl group ~4.4 

π–π stacking 1 TYR88 Aromatic ring ~3.9 

Hydrophobic interaction 3 ALA84, LEU86, VAL81 Aromatic ring hydrogens 3.5 - 4.2 

 

3.3 ADMET Analysis 

To assess the pharmacokinetics attributes and drug-

likeness scores for the identified lead compound, 

chlorogenic acid (3A), the SwissADME prediction tool 

was employed. Per ADMET analysis, chlorogenic acid 

satisfied the criteria outlined in Lipinski’s Rule of Five, 

implying its ability to act as an orally active drug 

candidate. 

 

The estimated physicochemical properties such as 

molecular weight, number of hydrogen bond donors, 

number of hydrogen bond acceptors, and lipophilicity 

were well within the allowed limits for an orally active 

molecule. The prediction by SwissADME also revealed 

optimal gastrointestinal absorption properties, supporting 

its potential for bioavailability. 

 

In general, the ADMET data indicate that chlorogenic 

acid has reasonable pharmacokinetic properties, and this 

is consistent with the molecular docking and interaction 

study results. Based on this data, the selection of 

chlorogenic acid as a candidate drug is justified. 

 

4. DISCUSSION 

This study looked at how some phenolic compounds 

might interact with the tyrosine kinase enzyme. We used 

molecular docking and other computer methods, plus 

checking ADMET stuff to see if they could work as 

drugs. The docking showed different binding strengths 

for each compound. It really depends on their structures, 

I guess. 

 

Compounds with lots of hydroxyl groups and those ring 

systems did better. The hydroxyls can make hydrogen 

bonds with amino acids in the active site. And the 

aromatic parts help with hydrophobic stuff and pi-pi 

stacking. That stabilizes things, making the binding 

stronger. Its kind of key for how ligands stick to proteins. 

 

Chlorogenic acid came out on top. It had the best affinity 

and interactions. It formed hydrogen bonds with ASP83, 

GLU88, ASN84, SER80. Then hydrophobic ones with 

ALA84, LEU86, VAL81. And pi-pi with TYR88. There 

was even some electrostatic help. All that together means 

its probably stable in there. 

 

This matches what other studies say about hydrogen 

bonds, hydrophobics, and stacking for kinase inhibition. 

Like, syringaldehyde and ascorbic acid did not do well 

because they lack those groups. So the structure really 

matters, as we saw. 

ADMET predictions from SwissADME showed 

chlorogenic acid follows Lipinskis Rule of Five. Its 

pharmacokinetics look okay. That fits with the docking, 

so maybe its worth looking into more as a drug 

candidate. 

 

But these are just computer results. They dont cover 

everything in real biology. It feels like we need in-vitro 

and in-vivo tests to really check if chlorogenic acid can 

inhibit kinases or fight cancer. Some people might think 

its promising already, but I am not totally sure without 

experiments. 

 

5. CONCLUSION 

This study looks at chlorogenic acid in a computer way, 

and it seems like it could be a good phenolic compound 

for targeting the tyrosine kinase enzyme. The molecular 

docking showed that it had one of the best binding 

affinities out of the compounds we picked, which means 

it interacts strongly with the active site of the protein. I 

think the detailed analysis of how the protein and ligand 

interact points to stability from non-covalent things, like 

hydrogen bonds and hydrophobic interactions, plus 

electrostatic ones and pi-pi stacking with important 

amino acids that help kinase activity. 

 

Chlorogenic acid has these multiple hydroxyl groups and 

aromatic rings, and that probably helps a lot with those 

interactions, making the binding more stable in the active 

site. It reminds me of what Ive read about structure-

interaction relationships for kinase inhibitors, where 

hydrogen bonding and hydrophobic contacts really 

matter for how well they bind. Sometimes it gets a bit 

confusing with all these details. 

 

On top of the docking results, the ADMET predictions 

from SwissADME say chlorogenic acid fits Lipinskis 

Rule of Five, and it has okay drug-likeness along with 

pharmacokinetic properties. Those are important for 

spotting potential leads that might work orally and go 

further in development. Not everything is perfect though. 

 

Putting it all together, the docking, interactions, and 

ADMET stuff suggest chlorogenic acid could be a lead 

for more research. But these are just computational 

predictions, so experimental stuff like in-vitro assays for 

enzyme inhibition, cell-based anticancer tests, and in-

vivo evaluations need to happen to really check if its 

useful as an anticancer agent targeting tyrosine kinase. 

That part feels like it needs more work to settle. 
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